Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
preprints.org; 2024.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202403.0917.v1

ABSTRACT

The relationship between pangolin-CoV and SARS-CoV-2 has been a subject of debate. Further evidence of a special relationship between the two viruses can be found by the fact that all known COVID-19 viruses have abnormally hard outer shell (low M disorder; i.e., low content of intrinsically disordered residues in the membrane (M) protein) that so far was found in CoVs associated with burrowing animals, such as rabbits and pangolins, in which transmission involves virus remaining in buried feces for a long time. While a hard outer shell is necessary for viral survival, a harder inner shell could also help. For this reason, the N disorder range of pangolin-CoVs, not bat-CoVs, more closely matches that of SARS-CoV-2 especially when Omicron is included. The low N disorder (i.e., low content of intrinsically disordered residues in the nucleocapsid (N) protein), first observed in pangolin-CoV-2017 amd later in Omicron, is associated with attenuation according to the Shell-Disorder-Model. Our experimental study revealed that pangolin-CoV-2017 and SARS-CoV-2 Omicron (XBB.1.16 subvariant) show similar attenuations with respect to viral growth and plaque formation. Subtle differences have been observed that are consistent with disorder-centric computational analysis.


Subject(s)
Oculocerebrorenal Syndrome , Combat Disorders , COVID-19
2.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-202006.0327.v1

ABSTRACT

A model to predict the relative levels of respiratory and fecal-oral transmission potentials of coronaviruses (CoVs) by measuring the percentage of protein intrinsic disorder (PID) of the M (Membrane) and N (nucleoprotein) proteins in their outer and inner shells, respectively, was built before the MERS-CoV outbreak. Application of this model to the 2003 SARS-CoV indicated that this virus with MPID = 8.6% and NPID = 50.2% falls into group B, which consists of CoVs with intermediate levels of both fecal-oral and respiratory transmission potentials. Further validation of the model came with MERS-CoV (MPID = 9%, NPID = 44%) and SARS-CoV-2 (MPID = 5.5%, NPID = 48%) falling into the groups C and B, respectively. Group C contains CoVs with higher fecal-oral but lower respiratory transmission potentials. Unlike SARS-CoV, SARS-CoV-2 with MPID = 5.5% has one of the hardest outer shells among CoVs. This shell hardness is believed to be responsible for high viral loads in the mucus and saliva making it more contagious than SARS-CoV. The hard shell is able to resist the anti-microbial enzymes in body fluids. Further searches have found that high rigidity of outer shell is characteristic for the CoVs of burrowing animals, such as rabbits (MPID = 5.6%) and pangolins (MPID = 5-6%), which are in contact with the buried feces. A closer inspection of pangolin-CoVs from 2017-19 reveals that these animals provided a unique window of opportunity for the entry of an attenuated SARS-CoV-2 precursor into the human population in 2017 or earlier, with the subsequent slow and silent spread as a mild cold that followed by its mutations into the current more virulent form. Evidence of this lies in the similarity of shell disorder and genetic proximity of the pangolin-CoVs to SARS-CoV-2 (~90%). A 2017 pangolin-CoV strain shows evidence of higher levels of attenuation and higher fecal-oral transmission associated with lower human infectivity via having lower NPID (44.8%). Our shell disorder analysis also revealed that lower inner shell disorder is associated with the lesser virulence in a variety of viruses.


Subject(s)
Coronavirus Infections , Combat Disorders , Hantavirus Pulmonary Syndrome , Severe Acute Respiratory Syndrome , Sleep Disorders, Intrinsic , Muscle Rigidity , Labyrinth Diseases
SELECTION OF CITATIONS
SEARCH DETAIL